Artificial Gravity for Human Exploration Missions NEXT Status Report July 16, 2002 #### **B. KENT JOOSTEN** Exploration Analysis and Integration Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LYNDON B. JOHNSON SPACE CENTER 2101 NASA Road 1, Houston, TX 77058-3696 Mail Code: EX13 Voice: (281) 483-4645 FAX: (281) 244-7478 kent.joosten@jsc.nasa.gov ### **Study Contributors** - GRC Trajectory Analysis, Propulsion - LaRC Structural Analysis - MSFC Consultation Propulsion, Power, Tether - JPL Propulsion - JSC Trajectory Analysis, Dynamics Analysis, Habitation Systems, Power/Propulsion Design, Vehicle Layout ## **Agenda** - Introduction - Study Results to Date - Trajectory Analysis - Dynamics - Structures - Power, Propulsion - Habitation - Configuration/Other Systems - Architecture Issues - Conclusions Drawn (so far) - Future Work ### Study Objectives, Constraints, Approach ### Objective: - Demonstrate preliminary engineering feasibility of artificial-gravity (AG), interplanetary human exploration spacecraft - Identify positive or negative system and mission impacts related to AG requirement #### Constraints: Artificial-gravity levels and rotational parameters as agreed to by NASA NEXT team March 2002 ### Approach: - Choose "archetype" mission to drive out system performance requirements - Make spacecraft systems selections with greatest AG synergy ### Rationale for Artificial-G - Continuing serious concerns regarding human physiological effects of longduration microgravity exposure - Loss of bone mineral density - Skeletal muscle atrophy - Orthostatic hypertension - Current countermeasures deemed ineffective (in particular w.r.t. bone mineral density loss) ### **AG Constraints** - Nominal design = 1.0 g - Essentially no data on efficacy of hypo-g as countermeasure - Acquiring this data would likely be difficult, time-consuming, and expensive - Rotation levels! 4 rpm - Acceptable crew adaptation times based on rotating room studies - Implies rotation radius of " 56 meters ### **Mission Archetype** - Intent is to make vehicle concept destination-independent - However, Mars round-trip "opposition" missions (all opportunities) chosen as study archetypes - Characteristics - 18-24 month round trip (18 month goal) - Three months stay in Mars system - "Split mission" no "Mars-specific" cargo sent out with crew - Departure/return point: Earth-Moon L₁ - Destination: Mars-Sun L₁ or high Mars orbit - Less than 200 tons initial mass #### - Rationale - Stresses interplanetary "steering" requirements (possible AG concern) - Stresses inner solar system operating regime (0.5-1.5 AU) - Stresses propulsion performance - Out of 18-24 month round trip, three months Mars stay with no gravity readaptation time required may represent good mission productivity - "Split mission" maintains destination-independence of crew transfer vehicle - Earth-Moon L₁ staging consistent with "Earth's Neighborhood" infrastructure; may be consistent with nuclear system operation - Mars L₁ avoids mission-specific orbital operations and requirements - Implications of lower orbit access will be addressed ### **Technology/Systems Selections** - Nuclear Electric Propulsion NEP and artificial gravity may be good match in vehicle design (NEXT Groundrule) - Constant low-thrust - Allows thrusting while under spin (low forces, torques) - No spin-down, burn, spin-up sequences - Steering techniques required - Vehicle configuration compatibilities - Long booms, trusses, etc. required for AG moment arms can serve as reactor " $1/r^2$ " crew radiation shielding - Reactor, power conversion systems = good "counterweight" - ECLSS Regenerable water, oxygen - Mission times consistent with AG require closed systems - Lower mass system choices possible if high power availability assumed (consistent with NEP) - Other system choices were assessed as to influence of 1-g operation ## **Other Assumptions** - Technology Horizon ~ 2015 - Avoid conclusions regarding AG feasibility being influenced by questionably optimistic technology assumptions - Implications for NEP (validated by MSFC) - Isp: 4000 6000 sec - Power: 5 12 MWe - Specific Power (#): 4 8 kg/kWe - Reusability " 3 missions - AG vehicle configurations may require substantial onorbit assembly/outfitting - High overhead if required for every flight - Nuclear systems will represent substantial investment - Consistent with high energy density potential of nuclear systems ### **Potential AG Configurations** | • | <u>Concept</u> | <u>Features</u> | Potential Advantages | Potential Challenges | |---|----------------|---|---|--| | | "Fire Baton" | •Hab counterweighted by reactor/power conversion systems | •No rotating joints, power connections, fluid connections, etc. | Vehicle angular momentum
must be continuously
vectored for TVC | | | | •Entire vehicle rotates •Vehicle pointing provides majority of thrust vector control (TVC) | •Power conversion systems operate in g-"field" | •Thermal radiators in g- "field" •Crew ingress/egress | | | "Ox Cart" | •Hab counterweighted by reactor/power conversion systems | •Thrust vectoring decoupled from rotational angular momentum | •Megawatt-level power , prop
transfer across rotating
joints | | | ≠ | •Thrusters, despun,
gimbaled for TVC | •Power conversion systems operate in g-"field" | Potential cyclical loading of rotating joints Thermal radiators in g- "field" Crew ingress/egress | | | "Beanie Cap" | •Split habitation volumes for
counterweights
•Reactor/power conversion
systems, thrusters in zero-g
•Thrusters gimbaled for TVC | from rotational angular momentum •Thermal radiators in zero-g | •Inefficiencies in duplicating habitation systems, crew transfer between them •Potential cyclical loading of rotating joints •Power conversion systems operate in zero-g •Kilowatt-level power transmission across rotating joints | #### Study Strategy - Address challenges of first configuration (probably simplest to understand) - If successful, defer analysis of other options for more in-depth study of option 1 - Identify findings common to multiple configurations ### **Current Configuration** #### Zero-G Docking Port - DeployableElement zero-g positional control - Power, data cable support - Light compression during spinup/spindown #### Main Power - Redundant Reactors - Redundant Power Conversion - Reactor Rad Shielding - Rotational acceleration/deceleration loads - Transfer RCS torques - Mass normalization - Suspension Cables - Main rotational tension loads 125 m #### Control Jets Spinup/spindown - Crew Module - Inflatable Pressure Shell - Radiation Shielding - Micrometeoroid Protection - Life Support - EVA Support - Body-Mounted Radiator #### Propellant Tanks Spars - Guy Cable Support #### **Main Thrusters** - Primary TVC via vehicle pointing - Main Power Radiators **Control Jets** Flexible, Deployable # **Agenda** - Introduction - Study Results to Date - Trajectory Analysis - Dynamics - Structures - Power, Propulsion - Habitation - Configuration/Other Systems - Architecture Issues - Conclusions Drawn (so far) - Future Work # **Trajectory Analysis** - Approach - Look at performance in representative good opportunities (2018) and poor opportunities (2012 or 2026) - Systematically vary key parameters to gauge general performance - Isp - Power and α - Flight time - Plot initial mass as a function of these parameters - Three different groups supporting the trajectory analysis activity: - JSC/EG using the RAPTOR tool, based on calculus of variations with a genetic algorithm to find a reasonable initial point - GRC using the VARITOP tool, based on calculation of variations - SAIC/Chicago using CHEBYTOP tool, based on Chebyshev polynomial approximations - Results being compared to understand both trajectory characteristics and any biases introduced by tool characteristics. ### **Initial Mass Performance** (as a function of total flight time) ### **Example Trajectories** #### **2018 Opportunity** 660 Day Round Trip Case (Favorable Opportunity) Perihelion = 0.426 A.U. #### **2026 Opportunity** 710 Day Round Trip Case (Unfavorable Opportunity) Perihelion = 0.416 A.U. For both cases: 6MW at 6 kg/kW, 5000 sec lsp, 90 MT dry mass ### Trajectory Analysis Observations (so far) - Mission can be accomplished for initial total mass and reactor power targets for all opportunities. - Flight times are at upper end of goals - Shorter flight times are achievable - Higher power level - Implies more challenging power system α 's (to maintain desired habitat counterweight) - Additional trajectory "tweaking" - Additional thrust arc on return leg - Venus gravity assist - Return leg perihelion - Higher heating rates (habitat TCS shows acceptable) - Higher radiation level if an SPE is encountered (TBA) - May be somewhat alleviated by trajectory tweaks ## **Agenda** - Introduction - Study Results to Date - Trajectory Analysis - Dynamics - Structures - Power, Propulsion - Habitation - Configuration/Other Systems - Architecture Issues - Conclusions Drawn (so far) - Future Work # **Spin Stability** # Ratios of Moments of Inertia determine spin stability about corresponding axes # Spinup / Spindown - Vehicle spinup/spindown requirements not difficult to meet - Large moment arm for RCS - Trade between thrust level and thruster on-time - Arcjet RCS may have role to play if: - Robust vehicle power available - Propellant reduction a priority - Improvement in arcjet thruster throughput - Extended (days) spinup time OK - Flywheel momentum storage probably not a player - Momentum storage = 1 m dia., 55,000 kg flywheel at 60,000 rpm | Thruster Isp, sec | Prop mass for spinup (or down), kg | |------------------------|------------------------------------| | 310 (MMH/N2O4) | 580 | | 450 (LOX/LH2) | 400 | | 800 (Arcjet) | 222 | | 1000 (Advanced Arcjet) | 180 | # **Steering Requirements** | Mission Phase | Maximum Turn
Required | Maximum
Required
Turning Rate | |------------------------------------|--------------------------|-------------------------------------| | Earth-Moon L₁
Departure/Arrival | 2 x 90°-180° | 13°/day | | Heliocentric | 580° | 2°/day | | Mars-Sun L₁
Arrival/Departure | 180° | 2°/day | | Mid-Course
Thrust Reversal | 2 x 180° | ~10 °/day | - Steering requirements seem to fall into two classes - Very slow rates during majority of trajectory (interplanetary cruise) - Moderate rates during Earth departure/arrival and mid-course - Different steering strategies may be pursued for these classes - Higher rates not anticipated unless mission requirements change (descent to lower Earth/Mars orbits) # **Gyroscopic Precession** - Precession (steering) accomplished by torquing at right angles to desired rotation direction - Constant torque produces constant steering rate # Two methods of torquing rotating vehicle under examination - Differential thrusting during appropriate rotation arcs - Control Moment Gyro torquing of spacecraft by commanding gimbal rates # **Steering Trades** #### **Steering with RCS** - If steering with RCS, thrusting would occur in +x direction only - Augments main propulsion - Thrusters could be utilized at either or both ends of vehicle - If steering with main propulsion, thruster(s) would be differentially throttled at appropriate time during rotation #### Steering with main(s) ### **RCS Precessional Steering** #### Propellant Quantities - Effectiveness of RCS steering can be estimated by integrating precession eq. - Prop quantities relatively high for chemical systems could total 10-15 tons if all turning done with precessional RCS (assuming 4x360°) - Quantities can increase up to 35% if rotational thrusting arcs are long (inefficient moment generation) #### Thrust Levels - Thrust levels required for vehicle turning computed from precession eq. - "Thrust Profile Factor" used to account for thrust pulse characteristics (f) #### Arcjets may be applicable - Propellant quantities reasonable (4-5 tons for 4x360°) - Power available - For "high" turn rates (15°/day), 10-15 N thrust, 100-150 kWe - For low turn rates (2°/day), 2-3 N thrust, 20-30 kWe - If higher thrust & power used throughout: 500 hrs total burn time, 500,000 cycles (18 mo. continuous) - Propellant quantities probably excessive for chemical thrusters $$\Delta \psi = \frac{gI_{sp}m_{prop}r}{I_{xx}\omega_S}$$ | RCS Isp, sec | Prop. for 360°
yaw, kg | Normalized
for main prop.
savings, kg. | |--------------|---------------------------|--| | 310 | 4000 | 3690 | | 450 | 2760 | 2450 | | 800 | 1550 | 1240 | | 1000 | 1240 | 930 | $$\dot{\psi} = f \frac{r T_a}{I_{rr} \omega_s}$$ Moment arm = 50 m Pulse applied every 180° Pulse "Width" = 90° of arc (90% thrusting efficiency) Arcjet Eff. = 30% Vehicle I_{xx} =2.1x108 kg-m² # **Main Propulsion Steering** - Moments generated by differentially "throttling" EP thrusters. Can be accomplished by: - Varying propellant flow rate at constant power (approach χ Rotation selected) - Varying power at constant flow rate - Additional main propulsion analysis to determine best approach - Thruster location will determine moment generated by given throttle profile - "Symmetric central" chosen for minimal propellant line length - Selected performance: - ±5% Thrust (±5 N) per thruster - Produced by ±0.25 g/sec prop flow rate - Results in 2.5°/day turn rate (sufficient for interplanetary cruise) Moment arm = 10 m Throttle "doublet" applied every 180° Pulse "Width" = 90° of arc (90% thrusting efficiency) EP Thruster Eff. = 60%, Nominal Isp = 4000 s Constant EP Power = 6 MWe Vehicle I_{xx} = 2.1x108 kg-m² ^{*}For constant mass flow rate approach ### **Minor Axis Rotation** - Technique for rotating thrust vector 180° - Rotation about vehicle z-axis - Applications: - Midcourse turnaround - Planetary spirals (if required) - ~36% loss of propulsive efficiency vs. tangential thrusting - Other possible implementation: second set of thrusters (-x thrust direction) - Thruster mass/expense vs. propellant required for rotation # **Minor Axis Rotation (cont.)** - Spiral efficiency - 2/\$ efficiency factor (~64%) compared to purely tangential thrusting - Planetary spiral application (Mars): # **Steering Strategy Comparison** | Mission Phase | Maximum
Turn
Required | Maximum Required Turning Rate | Impulse
Steering Only
(ArcJet) | Impulse + Minor
Axis Rotation | Impulse + MAR +
Main Propulsion
Modulation | |---|-----------------------------|---------------------------------------|--------------------------------------|----------------------------------|--| | Earth-Moon L ₁
Departure | 180° | 15°/day | 620 kg | 620 kg | 537 kg | | Heliocentric
Outbound, 1 st arc | 65° | 2°/day | 224 kg | 224 kg | 0 | | Mid-Course Thrust
Reversal | 180° | ~10°/day | 620 kg | TBD (small) | TBD (small) | | Heliocentric
Outbound, 2 st arc | 65° | 2°/day | 224 kg | 224 kg | 0 | | Mars-Sun L ₁ Arrival | small | small | ~0 | ~0 | ~0 | | Spiral to/from HMO | Multiple revs | 288°/day slew (Deimos)
180°/hr MAR | Impractical | TBD (small) | TBD (small) | | Mars-Sun L ₁ Departure | 180° | 2°/day | 620 kg | TBD (small) | ~0 | | Heliocentric
Inbound, 1 st arc | 225° | 2°/day | 775 kg | 775 kg | 0 | | Mid-Course Thrust
Reversal | 180° | ~10°/day | 620 kg | TBD (small) | TBD (small) | | Heliocentric
Inbound, 2 st arc | 225° | 2°/day | 775 kg | 775 kg | 0 | | Earth-Moon L ₁ Arrival | 180° | 15°/day | 620 kg | 620 kg | 537 kg | | | | | 5098 kg | 3238 kg | 1074 kg | # **Agenda** - Introduction - Study Results to Date - Trajectory Analysis - Dynamics - Structures - Power, Propulsion - Habitation - Configuration/Other Systems - Architecture Issues - Conclusions Drawn (so far) - Future Work ### **Structure** - Extended structure required for 1-g / 4 rpm operation - Lightweight (performance) - Stiff/Strong ("rigid body" transfer of forces/moments) - Deployable (practical assembly) - "Suspension-Compression" Structure used for "Existence Proof" - Allows material optimization for specific load paths (mass minimization) ### **'Suspension-Compression'** Structure #### Suspension Components - Suspension Cables - · Counterweight mass support during spin - Guy cables - Moment transfer from RCS - Spinup/spindown - Steering during spin - Mass balancing - "Liquid Crystal Polymer" (LCP) fibers selected for concept vehicle - Properties used for analysis Celanese Vectran® - Excellent tensile properties (Specific Tensile Strength >15x steel) - Much higher resistance to abrasion, fatigue, UV and radiation than Aramids (i.e. Kevlar®), much lower creep than UHWPE's (i.e. Spectra®) #### Compression Components - Masts - Positional control of elements (despun) TBD - Compression during initial spinup - Support for power cabling - Minor axis torques TBD - Spars - Guy cable support - "Ultra High Modulus Graphite" selected for concept vehicle - Properties used for analysis BP Amoco Thornel® Carbon Fiber P-650/42 and P-120 Carbon Fiber/Epoxy - P-120 allows extreme stiffness (Specific Stiffness >9x steel, Al) - P-650/42 provides very large compressive strength (1720 Mpa Yield) - Negligible thermal expansion # **Center of Gravity Control** - CG offsets in hab and power modules can cause stability concerns - Several cg control modes possible - Active ballasting/mass trim - Disadvantage: ballast & mechanism mass - I_{vv} augmentation - Disadvantage: ballast mass, decreased maneuverability (esp. minor axis rotation) - Active control of suspension/guy cable tension - Advantages: - Shares load paths with RCS - Low mass augmentation for increased loads - Example 10% (0.4 m) hab xy-cg misalignment (should be <u>extreme</u> case) - 0.4 m cg shift within suspension cable envelope in current design (cables @ 1.3 m) - Causes vehicle nutation ("coning") of ~3° - Equalizing suspension cable tension will allow hab rotation & cg alignment but results in floor tilt (4° for 10% x-cg) - Hab guy cables can be utilized for cg alignment while maintaining level # **Example Load Paths** next - Load paths for 10% hab cg offset - Assumptions - FOS = 5 for cables (Vectran zero creep) - Cables doubled for MM failure - Misc. includes coatings, spar MM protection, fasteners, etc.) - Loads for RCS torques will be two orders of magnitude smaller Suspension Tension 4x71 kN | C.G.
Offset | Suspension
Cables, kg. | Hab/Reactor
Guy Cables,
kg. | Spar Guy
Cables, kg | Spars,
kg | Misc. | Total,
kg. | |----------------|---------------------------|-----------------------------------|------------------------|--------------|-------|---------------| | 5% | 148 | 11 | 6 | 124 | 144 | 433 | | 10% | 148 | 22 | 12 | 158 | 170 | 510 | | 15% | 148 | 33 | 19 | 182 | 191 | 573 | ### **Example Load Paths (cont)** - Mast loads for spinup, spindown - Mast will be under compression only during period when Hab Module/Power Module "weight" is less than compression load - · Only mast loads identified to date - After that, no load (suspension cables support loads) - For spinup/down times less greater than 24 hours, compression loads will not exceed 100N (22 lbs) - Maximum mast loads may result from zero-g operations (hard to quantify at this time) - Docking forces - Plume impingements - LaRC Analysis - Providing finite element modeling and analysis for load conditions - 1-g - Spinu/spindown - · Maneuvers during transit - From loads analysis, determine low lightweight a structure (such as inflatabe/rigidizable structures) could be used for mast - Status - · Modeling nearly complete - Analysis to begin shortly | Thrust
Level,
N | Spinup
Time,
hrs. | ArcJet
Power,
kWe | Guy
Tension,
N | Max. Mast
Compression,
N | |-----------------------|-------------------------|-------------------------|----------------------|--------------------------------| | 5 | 100 | 65 | 24 | 23 | | 10 | 50 | 131 | 47 | 46 | | 15 | 33 | 196 | 71 | 70 | | 20 | 25 | 262 | 95 | 93 | | 25 | 20 | 327 | 119 | 116 | ## **Agenda** - Introduction - Study Results to Date - Trajectory Analysis - Dynamics - Structures - Power, Propulsion - Habitation - Configuration/Other Systems - Architecture Issues - Conclusions Drawn (so far) - Future Work ## **Three Point Scenarios** | Mission Time (days): | 590 | 550 | 550 | | |---------------------------|-------|-------------|----------|--| | Power (MWe): | 6 | 8 | 6 | | | Specific Impulse (sec): | 4675 | 5970 | 6944 | | | Alpha Goals (kg/kWe): | 6.7 | 5 | 5 | | | Nuclear Power | | 5 3.8 | 4.2 | | | EP/PPU/PMAD | 1.7 | 7 1.2 | 9. 0.8 | | | Initial Vehicle Wet Mass: | 193.8 | <u> 167</u> | 106.4 | | | Propellant Mass: | 103.8 | 77 | 43.2 | | | Dry Vehicle Mass: | 90 | 90 | 63.2 | | | Payload | 30 | 30 | 25 | | | NEP | 40 | 40 | 30 | | | Nuclear Power | 30 | 30 | 25 | | | EP/PMAD | 10 |) 10 | 5 | | | Bus/Structure | 14.8 | 16.2 | 6 | | | Boom/Struts/Cables | 2 | 2 2 | <u>.</u> | | | Core Module | | 5 5 | ; | | | Wet RCS | 4 | 1 4 | | | | TBD | 3.8 | 3 5.2 | | | | Tanks | 5.2 | 3.85 | 2.2 | | - Three technology sets scoped w/ varied NEP, habitat, and bus mass goals - All meet ~1.5 year total mission duration goals in 2018 opportunity - Wet mass ranges from 100 to 200 MT - 7 kg/kWe consistent w/ SEI projections of scaled SP-100 reactor + 1400K Rankine* - 5 kg/kWe consistent w/ SEI projections of advanced reactor + 1500K Rankine* - Trajectory analysis courtesy NASA/GRC - * Reference: AIAA 91-3607, "Multimegawatt Nuclear Power Systems for NEP", J. A. George. # **Power Module Concept** - Rankine Conversion assumed due to: - Lowest mass @ MWe powers - Lowest radiator area - Lowest reactor temperature - Though adds complexities of 2-phase fluid mgmt. & liq. metals (thaw, handling) - Primary radiator (~500-700 m^2, ~1000K) assumes technologies under previous development for advanced SP-100 radiators (reference Al Juhasz, NASA/GRC). - C-C composite heat pipe radiators, metal liner, potassium working fluid (5 kg/m²). - Flexible woven "fabric" radiators (DOE/PNL). - A potential deployment scheme has been identified. ## **Electric Propulsion Options** Ion, MPD, and VASIMR thruster technologies appear most promising for scalability to high power #### Ion Thrusters Pros: Operational @ low power, propellant properties - Cons: Grid scaling #### MPD Thrusters - Pros: Demo'd @ 100's kWe, compact - Cons: Lifetime, Li issues #### VASIMR - Pros: Lifetime, scaling - Cons: Low maturity, propellant properties ### • Propellant Properties: Argon: 1400 kg/m³, 87 K (liquid) Lithium: 500 kg/m³ - Deuterium: 170 kg/m³, 23 K (liquid) Ion Argon Tanks:100 MT design load2 spheres @ 4.1 m ID, 4.3 m OD MPD Lithium Tanks: 100 MT design load 6 spheres @ 4.0 m ID, 4.2 m OD Vasimr Deuterium Tanks: 100 MT design load 2 cylinders ~ 4.5 m Dia, 20 m long ## **Agenda** - Introduction - Study Results to Date - Trajectory Analysis - Dynamics - Structures - Power, Propulsion - Habitation - Configuration/Other Systems - Architecture Issues - Conclusions Drawn (so far) - Future Work ## **Crew Module Concept** ## **Agenda** - Introduction - Study Results to Date - Trajectory Analysis - Dynamics - Structures - Power, Propulsion - Habitation - Configuration/Other Systems - Architecture Issues - Conclusions Drawn (so far) - Future Work # Crew/Cargo Ingress/Egress - Assumption: During major assembly/refit operations, vehicle is despun - Hab outfitting - Fluids/propellant/consumables loading - Ingress/egress options during mission still being investigated # **Hub Docking Destabilization** ### Mass Breakout & Preliminary Launch Packaging **Core Module** 10m x 4.5 m ### **On-orbit Deployment:** - Crew Module Inflation - Masts - Power System Radiators ### **On-orbit Assembly/Outfitting Required for:** - Crew Module Systems - Spars, Cabling - Power Cabling - Propellant Prop Tanks, Stowed Masts 10m x 4.5 m **Crew Module** # Thrusters (Ion Shown) 5m x 3m x 2m 18m x 4.5 m | Wet Vehicle | 194961 | | |----------------------------|--------------|--------| | Dry Vehicle | 87161 | | | Habitat | 34951 | | | Avionics | 395 | | | ECLS | 4892 | | | EVA | 1613 | | | Thermal Control | 552 | | | Human Factors | 11989 | | | Medical Ops | 1048 | | | Structures | 12957 | | | Power | 1505 | | | Prop Tanks | 5200 | | | Bus Structure | 7010 | | | Core Module | 5000 | | | Spars, Cables | 510 | | | Masts | 1500 | | | Nuclear Power | 30000 | | | EP/PMAD | 10000 | | | Main Propellant | 103800 | | | RCS Propellant | 4000 | | | Green - Bottoms-up or high | confidence e | stimat | Green - Bottoms-up or high confidence estimate Orange - SWAG Red - WAG ## **Agenda** - Introduction - Study Results to Date - Trajectory Analysis - Dynamics - Structures - Power, Propulsion - Habitation - Configuration/Other Systems - Architecture Issues - Conclusions Drawn (so far) - Future Work ## **Architecture Issues to be Addressed** - Initial transport from LEO to EM L₁ - Assembly location - Initial transport to L₁ - Consistency with "Earth's Neighborhood" infrastructure - Refurbish/refuel at L₁ - Required infrastructure - Transport of consumables to L₁ ### Destinations - If low planetary orbit is destination, different mission archetype and/or vehicle configuration may serve better - Config. 2 provides faster, more efficient spiral down/up - Much of Mars stay-time (3 mo.) would be spent in spiral down/up # **Conclusions Drawn (so far)** - Archetype mission requirements met - Transit time reduction, perihelion increase may be possible - Additional thrust arcs - Increased power levels, more aggressive specific power technology - Venus gravity assist - Major challenge unique to Config. 1 addressed - Steering strategies identified consistent with archetype mission requirements - Propellant requirements not excessive - Small effects of mass imbalances control strategies identified - AG may provide significant advantage for system test & certification - Long-duration zero-g testing not required - Environmental control and life support - Power conversion # **Conclusions Drawn (so far)** - Config. 1 mass penalties associated with AG appear minimal - Separation distances associated with nuclear system used advantageously (validates choice of NEP) - No massive despun joints, interfaces, etc. (hub ingress/egress TBD) - Good convergence between power system mass as habitat counterweight and propulsive performance utilizing reasonable specific power and thruster performance - Tension/compression structures appear to be very mass efficient - Boom design and mass TBD - Multiple spinup/spindown sequences appear unnecessary (crew ingress/egress TBD) - Steering while under spin does not require large propellant quantities - · Virtually "free" in heliocentric space - Vehicle Assembly - Attempt was made to maintain module envelope: 5m x 18m x 35 mt - Consistent with "Earth's Neighborhood" architecture requirements (augmented Delta IV Heavy) - Challenging 90-day stay Mars mission appears achievable - 18-24 month round trip and no crew g-adaptation time at Mars - Transit vehicle mass of 200 tons or less ## Schedule & Future Work - Targeted contracted study - Structural analysis, mast deployment concepts AEC Able - Additional studies - Refine launch packaging - Crew ingress/egress concepts & recommendation - Micrometeorite environment & shielding strategies - Habitat radiation shielding assessment - Potential additional studies - Reactor radiation scattering - Definition on deployable high-temp radiator # **Backup** ## Reactor Energy Requirements - A "middle ground" may exist between human and robotic energy needs - Robotic NEP: 100's kWe for 10-20 yr - Human NEP: few MWe's for 2-4 yr - A reactor capable of ~10,000-20,000 MWt-days, w/ sufficient throttleability, may be capable of serving both needs | Mission | Electrical
Power | Thermal
Power | Duration | Duration | Energy
from Rx | |---------------|---------------------|------------------|----------|----------|-------------------| | | (MWe) | (MWt) | (years) | (days) | (MWt-days) | | Robotic 100kW | 0.1 | 0.5 | 10 | 3653 | 1826 | | Robotic 100kW | 0.1 | 0.5 | 20 | 7305 | 3653 | | Robotic 1MWe | 1 | 5 | 10 | 3653 | 18263 | | Robotic 1MWe | 1 | 5 | 20 | 7305 | 36525 | | Human 3MWe | 3 | 15 | 1.5 | 548 | 8218 | | Human 3MWe | 3 | 15 | 4 | 1461 | 21915 | | Human 6MWe | 6 | 30 | 1.5 | 548 | 16436 | | Human 6MWe | 6 | 30 | 4 | 1461 | 43830 | ### A Megawatt-class Nuclear Power Concept ### **Observations from past NEP Systems Studies** - Technology selections not as critical at low powers (10's kWe), but has dramatic impact at high powers (MWe's) - Cycle operating temperatures single most important driver to both: - System performance (mass, alpha, radiator area) - Degree of technical difficulty (fuels, materials, etc.) - Fast Spectrum / Liquid Metal Cooled Reactors (LMR) typically smaller & lighter than Gas Cooled Reactors (GCR) - Brayton & Rankine best suited power conversion at multi-megawatts - Brayton: - Simple, single phase fluid - Low rejection temperatures → large, more massive radiators - Rankine: - Adds complexities of 2-phase fluid management, liq. metal handling & thaw - High rejection temperatures → smaller, lighter radiators & system mass - Rankine systems lighter for same reactor temperature - For stated mass ("alpha") objective, Rankine can be used to "buy down" temperature in reactor fuels, materials, and overall cycle # **Habitation** | <u>System</u> | <u>Description</u> | Implications of 1-g | Implications of Robust Power | Mass
(kg) | |--|---|--|---|--------------| | Avionics | Provides command, control, communications, and computation for vehicle operations Allows voice, data, and video communication to Earth, Mars surface, orbital assets, and EVA crewmembers Provides an integrated health management system for onboard and ground monitoring | No major impacts | Enhanced redundancy for computation and instrumentation Improved communication and data transmission | 395 | | Environmental
Control and Life
Support | Based on a partially closed-loop design (air and water are recycled, solid waste is stored) Provides a shirtsleeve living environment for the crew | Enables ground testing of flight hardware Requires pumps to counteract gravity in fluid systems (~10% or 110 watt pumping power requirement increase) | Permits the use of lighter,
smaller, more capable system
components | 4892 | | Extra-Vehicular
Activity | An inflatable airlock will allow two crewmembers to egress per EVA Advanced lightweight suits will accommodate movement in the 1-g environment | Requires development of
lightweight suits (ie. current 53 kg
vs. needed 22 kg on-back carrying
mass) | No major impacts | 1613 | | Thermal Control | Collects heat from coldplates and
heat exchangers which is rejected
through body mounted radiators | Requires pumps to counteract gravity in fluid systems (~10% or 110 watt pumping power requirement increase) Requires sturdy radiator mounting technique | Allows heat leaks to be overcome by direct heating rather than adding heavy insulation to shell Thermal rejection requirements must be met | 552 | # **Habitation** | <u>System</u> | <u>Description</u> | Implications of 1-g | Implications of Robust Power | Mass
(kg) | |------------------------------|---|---|--|--------------| | Human Factors & Habitability | Provides system hardware, appliances, and food to accommodate a crew of 6 on an 18-month mission Provides living and working quarters for crewmembers | Major impact to habitat layout – floor space only Allows hardware to be modeled after Earth-based counterparts (ie. sinks, showers, ovens, etc) | Permits the use of appliances
that improve the standard of
living (ie. dishwasher, freezers,
clothes washer/dryer, etc) | 11989 | | Medical Operations | Systems will enable remote monitoring of crewmembers, data acquisition, analysis, and interpretation Distributed architecture allows access to software from any computer | Enables standard 1-g protocols to
be followed during various
procedures (ie. advanced cardiac
life support, medication
purification, etc) | Significant benefits by allowing
power-intensive equipment,
bioinstrumentation, and
telecommunication (ie. x-ray,
bone densitometry, virtual reality
training, etc) | 1048 | | Structures & Mechanisms | Inflatable module based on Transhab design, modified to accommodate loading in a 1-g environment Outfitting missions will be required Radiation shielding considerations included | Requires major modifications to
original Transhab design in order
to accommodate 1-g loading | May encourage growth in other
systems, thus require greater
structural mass | 12957 | | Electrical Power | Approximately 15 kWe is delivered to the habitat Fiber Li-Ion batteries perform power conditioning and supply 24 hours of emergency power at 50% nominal load Power is delivered to system hardware in three forms: 115 Vac 400 Hz; 115 Vac 60 Hz; 28 Vdc | No major impacts | Allows increased power requirements to be easily met May increase wiring and power distribution hardware masses | 1505 | ## Thrust Profile Factors (f) Turn rate: $$\dot{\psi} = f \frac{r T_a}{I_{xx} \omega_S}$$ Step function pulse $$f = \frac{2}{\pi} \sin \frac{\Delta \theta}{2}$$ Step function over half arc $$f = \frac{2}{\pi}$$ Sinusoid $$f = \frac{1}{2}$$ Ramp with plateau $$f = \frac{4}{\pi(\pi - \Delta\theta)} \cos\left(\frac{\Delta\theta}{2}\right)$$ Ramp function $$f = \frac{4}{\pi^2}$$